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The shearless turbulence mixing layer 
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The interaction of two energy-containing turbulence scales is studied in the absence 
of mean shear. The flow, a turbulence mixing layer, is formed in decaying grid 
turbulence in which there are two distinct scales, one on either side of the stream. This 
is achieved using a composite grid with a larger mesh spacing on one side of the grid 
than the other. The solidity of the grid, and thus the mean velocity, is kept constant 
across the entire flow. Since there is no mean shear there is no turbulence production 
and thus spreading is caused solely by the fluctuating pressure and velocity fields. 
Two different types of grids were used : a parallel bar grid and a perforated plate. The 
mesh spacing ratio was varied from 3.3: 1 to 8.9: 1 for the bar grid, producing a 
turbulence lengthscale ratio of 2.4 : 1 and 4.3 : 1 for two different experiments. For the 
perforated plate the mesh ratio was 3 : 1 producing a turbulence lengthscale ratio of 
2.2 : 1. Cross-stream profiles of the velocity variance and spectra indicate that for the 
large lengthscale ratio (4.3 : 1) experiment, a single scale dominates the flow while for 
the smaller lengthscale ratio experiments, the energetics are controlled by both 
lengthscales on either side of the flow. In  all cases the mixing layer is strongly 
intermittent and the transverse velocity fluctuations have large skewness. The 
downstream data of the second, t'hird and fourth moments for all experiments 
collapse well using a single composite lengthscale. The component turbulent energy 
budgets show the importance of the triple moment transport and pressure terms 
within the layer and the dominance of advection and dissipation on the outer edge. 
It is also shown that the bar grids tend toward self-similarity with downstream 
distance. The perforated plate could not be measured to the same downstream extent 
and did not reach self-similarity within its measurement range. In other respects the 
two types of grids yielded qualitatively similar results. Finally, we emphasize the 
distinction between intermittent turbulent penetration and turbulent diffusion and 
show that both play an important role in the spreading of the mixing layer. 

1. Introduction 
Fully developed turbulence consists of a complex continuous spectrum of 

interacting scales. Although the interaction of the various spectral modes is still 
poorly understood (see for example Herring 1985), success in modelling the gross 
characteristics of simple turbulent flows such as wakes, jets and mixing layers, has 
been achieved by recognizing that there is a single dominant energy-containing scale 
for these cases. Thus the spreading rate and energetics of the above-mentioned free- 
shear flows are well predicted (Tennekes & Lumley 1972). However, many turbulent 
flows have more than one dominant scale, for example a turbulent boundary layer 
developing in free-stream turbulence, and these flows are difficult to model or 
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FIQURE 1. Sketch of the wind tunnel showing the grid consisting of the two different mesh lengths. 
M ,  < M , .  Also shown are typical mean (U) and longitudinal variance (u') profiles and the 
coordinate system used. The actual grid designs are shown in figures 2 and 3 below. 

predict? without a detailed understanding of the spectral dynamics. Simple 
superposition fails because of the nonlinearity of the interactions. It is towards 
gaining a better understanding of the interaction of two dominant energy-containing 
scales that the experiment to be described here was conducted. 

The flow, a shearless turbulence mixing layer, is formed in decaying grid 
turbulence in which the mean velocity is constant throughout, but two distinct scales 
of turbulence are formed on either side of the stream (figure 1). As the flow evolves 
these two different turbulent fields penetrate and diffuse into one another. This flow, 
free of complex turbulent shear production mechanisms, relies for its evolution solely 
on turbulence-turbulence interactions. (The governing equations are discussed in 
$2). For this reason we have called it a turbulence (rather than turbulent) mixing layer. 
In this regard, i t  seems to be more fundamental than the traditional turbulent 
mixing layer formed because of an instability between two parallel streams each 
moving a t  a different speed, a flow that has been extensively studied in the past 
(Townsend 1976 ; Breidenthal 1981). Surprisingly, the shearless turbulence mixing 
layer has received little attention. Apart from our preliminary study (Veeravalli & 
Warhaft 1987, hereinafter referred to as V&W) the only previous experiment appears 
to be due to Gilbert (1980) but because of his flow configuration he failed to observe 
the large-scale intermittency in the mixing layer, perhaps the most important and 
unusual characteristic of this flow which is homogeneous in the mean. Gilbert's work 
will be discussed in relation to  our own results below. 

The shearless mixing layer is very difficult to set up experimentally. In V&W we 
devoted most of the paper to problems associated with attaining the prescribed flow. 
These problems will be discussed further in $ 3  below. We also described some 
preliminary results pertaining to the evolution of the mixing layer for a parallel bar 
grid with a single mesh length ratio (see $ 3  for a description of the grids). In the 
present study the mesh length ratio (and hence the ratio of the dominant scale sizes) 
for the parallel bar grid is varied and a new way of generating the mixing layer by 
means of a perforated plate is described. Thus here we are particularly concerned 
with how varying initial conditions affects the evolution of the flow. We also study 
the energy budgets and spectra; these were not documented by V&W. Furthermore, 

t For instance, Rodi & Scheuerer (1985) show tha t  the dependence of the interaction between 
boundary layer and free-stream turbulence on the free-stream lengthscale, predicted by k--E and 
second-order models, is opposite to what is observed experimentally. 
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since our previous study, we have devised new ways to tune the flow and thus we 
believe the results presented here are more representative of the ideal than those 
presented in V&W, although both sets are in qualitative agreement. 

Finally, our study in some ways springs from our earlier work concerning passive 
scalars (Warhaft 1981, 1984; Sirivat & Warhaft 1983). In  those experiments we were 
interested in the interaction of more than one scalar field, each with its own dominant 
scale and spectrum. Of course linear super-position must hold for passive scalar fields 
but not for the velocity field. Indeed the present study shows that the interaction of 
two velocity fields is much more complex to set up experimentally and it is also 
harder to draw general inferences from it. 

2. The governing equations 
The objective of this investigation was to  study the interaction of two distinct 

turbulent scales in the absence of mean shear. A composite grid of two different mesh 
sizes but with a constant pressure drop was used to generate the flow. Since the 
pressure drop is constant, the amount of energy transferred from the mean motion 
to turbulent fluctuations at  the grid is the same across the whole flow. However, 
because of the smaller scales, the initial decay is much faster on the small-mesh side 
of the flow (Batchelor 1953). Thus, when both regions enter the power-law decay 
regime, a t  about 20 mesh lengths from the grid (Hinze 1975), both the turbulence 
intensity and the lengthscale are larger on the large-mesh side than on the small- 
mesh side. (The power-law decay of the turbulent energy and its components is 
documented below, see $3, table 1.) However, the decay exponent is approximately 
the same on both sides of the mixing layer because the grid geometry is the same. 
Hence, the energy and scale ratios remain constant with downstream distance. The 
salient features of the flow then are (figure 1) : the only mean velocity component is 
U ;  there are no mean velocity gradients; the flow is strongly inhomogeneous in the 
y-direction, decaying and weakly developing in the x-direction and homogeneous in 
the z-direction. Thus the evolution equations for the velocity variances aret  

ax ax a Y  p ax pax (-) , ( l a )  
a -  a -  a -  2 X 2 a  

U- (u2) +- (243) +- (u”) = @)-2v -- 

au ax a Y  P a Y  Pay (-) ( 1 b )  
a -  a -  a -  2 T 2 a  

U-(w”+-(uw2)+-(w3) = -p - - - - (p ) -2v  -- , 

(-) a -  a -  a ? -  2 x  
U-(w2)+-(%w2)+-(VW ) - -p--2v -- , 

ax ax a Y  P az 

where, as usual, upper case letters denote mean quantities and lower case letters 
represent fluctuations. The overbars denote average values, p is the pressure 
fluctuation and v and p are the kinematic viscosity and density respectively (both are 
constant). The kinetic energy equation may be obtained by summing one half of (1 a) ,  
( l b )  and ( l c )  and is 

i3k a u(u2+w2+w2) w ( u 2  + w2 + w2) l a  l a  aui aui (p) - -- (p) - V -- , u-+-( ax ax )+$( 2 ) =  -& P 3% axj axi 

t The notation x = (z, y, z )  and u = (u, w, w) will be used interchangeably with x = (q. z2, x3) and 
= u1, u2, us). 
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In the equations above, the downstream transport terms (second term on the left- 
hand side of ( l a ) ,  ( i b ) ,  ( i c )  and (2 )  and the second term on the right-hand side of 
(1  a )  and ( 2 ) )  should be negligible as the flow is slowly developing with x. However, 
they have been included to  emphasize the form of the equations. The equations show 
the absence of production and indicate a balance between the advection, dissipation, 
triple-correlation transport and pressure transport and scrambling terms (the 
scrambling term is not present in the total kinetic energy budget). Since the 
turbulence is decaying across the whole flow, we would expect dissipation to 
contribute significantly to the budget in all regions. This should be compared with 
the behaviour in free shear flows where the dissipation is negligible a t  the outer edge 
of the flow and advection balances transport (Townsend 1976). 

In  shear flows, the mean velocity gradients give rise to the off-diagonal Reynolds 
stresses; the absence of mean velocity gradients here would suggest that these 
stresses should be zero. However, in this flow there is another mechanism by which 
rn may be generated, as was earlier noted in V&W. The x-component of the curl of 
the mean momentum equation is 

a a -  - - a 2  a 2  _- (92-v ) - -(m)--(m). 
ayax a x 2  aY2 

(3) 

Even for homogeneous ‘ isotropic ’ grid turbulence ;El” =+ 3 (Comte-Bellot & Corrsin 
1966) and within the mixing layer, ( I  a )  and (1 b)  indicate different behaviours for 2 
and 3. Furthermore, the turbulence is decaying and the mixing layer is thickening 
and thus the left-hand side of (3) should not be zero. Therefore TFO cannot be 
identically zero in the mixing layer. Indeed, in $3  we shall show that a small but 
significant value of i i~  does occur because of the above mechanism, and while i t  does 
- not influence the kinetic energy budget, i t  does give rise to a production term in the 
u3 equation. The budget for is 

(advection) (transport) (pressure effects) 

The dynamics of the second-order mixing layer are further elucidated by a study 
of the third-order and fourth-order moments. The transport equations for the third- 
order terms of relevance are 

- 
a 2  a [ &  - ] ay a x -  i au2 a z u  u--+- --u2m +m-u - +-p-+vuz- ax 3 ay 3 P ax axj ax3 ’ 

U--+---$-v a 7  a v 4  - a 7 -  ----pv2+-pp++v2- l a -  I a v 2  
a Z v  

a x 3  a y 3  ay pay p ay a x i a X + ’  

( 5 4  
(advection) (transport) (production) (pressure effecta) (viscous effects) 

- 

, ,  
(advection) (transport) (production) (transport) (pressure effects) (visrous effects) 

a -  a -  a - a -  u- u2v + - u2v2 - 2 m - im - u2 - v2 

ax ay a Y  a Y  
(advection) (transport) (prdurtion) 

i a -  I[- 321 [ 
Pay P ax a Y  

- - -_- pu2+- 2p-+p- + v  2uv- 

(viscuuu effectx) (transport) (preuaure effects) 
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(advection) (transport) (production) 

(transyort) (prewnure rlfertn) 

(All _ _  the terms in the 2 equation are zero by symmetry.) Similarly, the equations 
for u4, u4 and 2 are: 

. .  
(advrrtiun) (trannport) (prudurtiun) (prwsurr rffktx) (viwrous rffrrtx) 

. .  
(advertiun) (transport) (presfiure effects) (vinrous rlfrrta) 

Just  as the gradients of the mean velocity components give rise to the production 
term in the equations for the second-order quantities, gradients of second-order 
moments generate production terms in the third and fourth moment equations. We 
note that the pressure and velocity correlation transport terms in (56) ,  ( 5 c )  and ( 5 4  
arise from -- 1ateralEdients -- of quantities containing even powers of the velocity field ; 
namely, v4, u2v2, w2v2, pv2, pu2 and 3. These even moments need not be zero in the 
two homogeneous edges of the mixing layer and in general will have different values 
in the large- and small-scale homogeneous regions. Hence, in these equations, there 
is a net flux from the homogeneous region a t  y + + co to y ?r - 00. This effect is not 
present in the equations for u4, v4 and w4 since in these equations (as in the variance 
equations), the transport terms arise from gradients of odd moments of the velocity 
field. We also note that the terms labelled pressure effects in ( 5 )  and (6) are more 
complex in nature than the corresponding redistribution term in the variance 
equations. 

The above equations will be further discussed with reference to our data on third 
and fourth moments (54.3). 

_ -  

3. Experimental apparatus and method of flow realization 
The experiments were conducted in a vertically oriented wind tunnel (Sirivat & 

Warhaft 1983) with a test section 4.25 m long and a cross-section of 0.406 x 0.406 m2. 
Figure 1 shows a schematic view of the tunnel and the coordinate system used. 
Henceforth, quantities (such as the mesh size M ,  lengthscale 1, velocity variance 2, 
etc.), with the subscript 1,  characterize the low-turbulence homogeneous region and 
those with the subscript 2 characterize the high-turbulence homogeneous region of 
the flow. Three grids were used; two parallel bar grids (M2/M,  = 3.3, M J M ,  = 8.9) 
and a perforated plate (M2/Ml = 3)t.  The values of the mesh sizes, M ,  and M ,  and the 

t Formally, the term 'grid' refers to a crossed-bar structure. However, we call the parallel bar 
arrays and the perforated plate used here grids, because they produce grid turbulence ; i.e. they 
produce turbulence that is qualitatively very similar to that of traditional biplanar crossed-bar 
grids. 
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Flow parameters 

M,(cm) 
M2 (cm) 
solidity u 
location of the geometric centre (cm) 
mean velocity U( m/s) 
RM, = UMJv  
R M z z C M 2 P  - 
k = _  - (u: + II: + w;) (m2/s2) 

( a )  (6) 
- 
4 0.151 0.0300 
v: 0.130 0.0238 
w : 0.251 0.0235 
kl  0.268 0.0383 

- 
- 

3.3: 1 
Parallel 
bar grid 

0.95 
3.15 
0.32 

18.24 
5.9 
3 505 

11616 
0.01 34 
0.103 
1.49 
0.083 
0.641 
3.60 
0.48 
0.49 

92.6 
573.6 
29.8 
78.1 
0.130 
0.129 
1.01 
2.42 

n 

- 
(a )  ( b )  

1.33 1.25 ui 
1.30 1.25 w: 
1.49 1.26 w: 
1.39 1.25 k, 

- 
- 

8.9: 1 
Parallel 
bar grid 

0.477 
4.25 
0.29 

14.4 
5.85 
1744 

15539 
0.005 8 
0.045 
0.98 
0.134 
1.16 
4.23 
0.46 
0.47 

38.8 
868.8 

18.2 
96.5 
0.129 
0.116 
1.12 
4.32 

A 

3:1 
Perforated 

plate 

1.12 
3.35 
0.31 

20.04 
5.8 
4 060 

12 180 
0.008 15 
0.090 
0.80 
0.051 
0.655 
1.78 
0.42 
0.37 

40.3 

21.2 
44.5 

214 

0.091 
0.078 
1.17 
2.23 

n 

(a )  (6) (a) ( b )  
0.167 0.0843 1.29 1.46 
0.303 0.0656 1.51 1.41 
0.282 0.0577 1.53 1.39 
0.343 0.106 1.42 1.43 

(a) 3.3: 1 parallel bar grid, (6) 3: 1 perforated plate 

TABLE 1. Flow parameters for the three grids; k, E and 1 are the turbulent kinetic energy, 
dissipation rate and integral lengthscale respectively ; R, and R, are the integral scale and Taylor 
Reynolds numbers, based on 1 and the Taylor microscale A respectively; and 7 is the integral 
timescale. Subscript 1 refers to the small-scale homogeneous region while subscript 2 refers to the 
large-scale homogeneous region. The general decay laws for the velocity variances and kinetic 
energy are also given for both the large- and small-scale homogeneous regions, for the 3.3 : 1 parallel 
bar grid and the perforated plate. The fluctuation parameters were evaluated a t  : (a) x = 33.65M2 
(106 cm), for the 3.3: 1 bar grid; (6) x = 21.4M, (91 cm) for the 8.9: 1 bar grid; and (c) 2 = 19.4M2 
(65 cm) for the perforated plate (v = 1.6 x lo-' m2/s and p = 1.15 kg/ma). 

grid solidity (T (here solidity is defined as the ratio of the closed area of the grid to 
the total area) for the three grids are documented in table 1.  The construction of the 
grids is described in detail below. The mean velocity was approximately 6 m/s for all 
three experiments (Table 1). Conventional x -hot wires were used, in conjunction 
with Dantec 55M01 constant-temperature anemometer bridges, to measure the U,  u, 
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v and w velocity fields. The wires were made of tungsten with a diameter of 
3.05 x lop3 mm and a length-to-diameter ratio of approximately 200. The overheat 
ratio was 1.8. The velocity signals were band-pass filtered through Khronhite 3342 
filters prior to  digitization. The signals were digitized using an A-D converter (Digital 
Equipment Corporation, ADV11-DA) with an output resolution of 12 bits and a 
maximum speed of approximately 45 kHz. Two different sampling rates were used. 
To capture the full range of scales, a Nyquist frequency of 5 kHz was chosen for 
calculating the spectra and dissipation. For generating moments, on the ot,her hand, 
a much smaller sampling rate (< 400 Hz) was used so that each sample was 
separated from its neighbours by at  least one integral timescale. This separation in 
time is necessary for quick convergence of high-order moments of the velocity field 
(Tennekes & Lumley 1972). A calibration procedure based on the studies conducted 
by Champagne, Sleicher & Wehrmann (1967), and Champagne & Sleicher (1967) on 
inclined hot wires, was used to convert the instantaneous voltages into velocities. 
The results were analysed on a Micro Vax I1 computer. 

3.1. The parallel bar grids 

Parallel bar grids were used to generate the mixing layer rather than conventional 
biplanar grids as matching the mesh sizes and tuning the grid to obtain a constant 
mean field would have been extremely difficult with a biplanar grid. Even with 
parallel bar grids, obtaining the desired flow was not easy; a 0.5 mm change in bar 
position could change the mean velocity by 1.5 % locally. The final adjustments to 
the grid spacings involved changes as small as 0.15 mm. Many months were spent in 
fine-tuning these grids. As discussed in V&W, there is an additional problem with 
parallel bar grids caused by the presence of large structures in the flow which 
originate from the vortices shed from the bars. Close to the grid the vortices are 
oriented parallel to the grid bars but the large-scale structures, arising from a 
complex interaction of these vortices, eventually align themselves perpendicular to  the 
grid bars as a study of the two-point correlation functions R,,(O, r ,  0) and R,,(O, 0, r )  
showed (V&W). When the aspect ratio (ratio of the width of the tunnel to  the 
mesh spacing) is small (approximately less than 15), these structures (approximately 
4 mesh sizes in width) convect turbulent energy from the centre of the flow to the wall 
regions. While the mean velocity field is essentially unaffected by this mixing, large 
unwanted gradients of the variance field are generated in the z-direction by it. The 
aspect ratio for the large-mesh region of the 3.3: 1 grid was 13, while it was 9.5 for 
the 8.9 : 1 grid. Hence in both these grids the large-mesh region was susceptible to the 
problem discussed above. In an effort to break up these large structures and generate 
a more homogeneous flow, small blocks were glued onto the sides of the grid bars. The 
thicknesses of the blocks were 1.02 mm for the 3.3: 1 grid (bar width = 9.53 mm) 
and 1.59 mm for the 8.9: 1 grid (bar width = 11.11 mm). The blocks were placed 
approximately one mesh length apart in an effort to  best simulate a crossed-bar 
grid and their thicknesses were determined by trial and error, so as to generate 
homogeneous mean and fluctuating velocity fields. Figure 2 shows in detail, the 
construction of the parallel bar grids. In  V&W, a helically wound wire, with a lead 
of approximately 1 mesh length and a thickness approximately equal to that of the 
blocks mentioned above, was used to homogenize the flow. However, since the low- 
intensity region of the flow is most influenced by the winding closest to it, there is 
a tendency for this region of the flow to get skewed in the direction of the helix; 
hence, blocks were preferred in the present experiments. To reduce the effect of the 
blocks on the low-intensity region, the row of blocks closest to the small-mesh side 
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WI , wz , 

k- 406.4mm -4 
FIGURE 2. Sketch of the parallel bar grids showing the details of construction. 

Grid M ,  M ,  m3 w1 w2 w3 w4 d, d, d, n, n2 
3.3:l  9.53 31.5 29.7 3.18 9.53 1.02 9.78 5.11 14.61 20.3 19 7 
8 .9: l  4.77 42.5 34.9 1.59 1 1 . 1 1  1.59 9.53 6.80 20.30 26.9 29 6 

The number of small bars is n1 and the number of large bars is n2. The bars are square-sectioned 
and the blocks extend over the full width of the bars. All the dimensions above are in mm. 

was omitted for the 3.3 : 1 grid. For the low-intensity side no blocks were needed since 
here the aspect ratio was high (39 for the 3.3: 1 grid and 66.5 for the 8.9: 1 grid). 

3.2. The perforated plate 
To study the influence of initial conditions and grid geometry on the development of 
the mixing layer, a perforated plate with a mesh ratio of 3 : l  was also used to 
generate the flow. Figure 3 shows the details of construction of this grid. As shown 
in the figure the grid essentially consists of a plate with holes of two different sizes 
(the radii are 14.29 mm and 4.76 mm). The separation between the holes was chosen 
so as to obtain the same solidity (0.31) on both sides of the grid. At the centre of the 
grid small holes (radius 2.95 mm) were added to  reduce the local solidity to 0.31. 
However, in spite of the care taken in manufacturing the grid, the resulting mean 
velocity field had local variations. These were largely eliminated by introducing 
0.23 mm thick Mylar tubes into the large diameter holes (figure 3). When the tubes 
extended upstream of the plate, they caused the flow to slow down locally owing to 
an increased blockage, while, when the tubes extended downstream, they streamlined 
the flow causing it to increase locally. By trial and error the tube lengths and 
positions required for a homogeneous mean velocity field, were determined. These are 
shown in figure 3. Since the perforated plate behaves like a crossed-bar grid the 
problem of large-scale structures encountered with the parallel bar grids is absent 
here. 



The shearless turbulence mixing layer 

7.97 mm> 
4 k 12.9 mm 4G 
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M, = 1 

R =  - 

1.33 mm 

4.16 mm 
7 

= M* 1 

k- 406.4mm -+ 
10.16 mm 

on either side \2.54 mm \Mylar tube 

Flow 

FIQURE 3. Sketch of the 3 :  1 perforated plate showing the details of construction. Also shown are 
the tubes in the large-diameter holes used to reduce mean velocity gradients. The tiny holes a t  the 
centre of the grid and at the large-scale edge of the grid are 2.95 mm in radius. 

3.3. Realization of the $ow 
As discussed in $2 above, for an ideal turbulence mixing layer, the mean velocity 
gradients should be zero so that there is no production term in the kinetic energy 
budget, the flow should also be homogeneous in the z-direction so that gradients of 
all mean quantities are zero in that direction and the turbulent timescales should be 
the same a t  the two homogeneous edges of the flow. 

Figure 4 shows a two-dimensional map of the mean velocity a t  x = 65 cm for each 
of the three grids. We note that all the three mean velocity fields are approximately 
homogeneous ; the overall change in U is approximately 6 Yo for the two parallel bar 
grids and 8% for the perforated plate. The maximum shear rate is nearly the same 
in each case (approximately 71s). We will now consider the magnitude of the 
turbulence energy production term caused by these inhomogeneities in the mean 
flow. Figure 5(a) shows the profile of the W correlation at  x = 49.5M2(156 cm) for the 
3.3 : 1 grid (the production term is most significant at this location, for this grid). We 
see that the correlation, though small, is not insignificant ; it attains a peak value of 
about 0.3 within the mixing layer. This might seem surprisingly high in the absence 
of large mean shear; however, as discussed in $2, a different mechanism for the 
generation  of^ exists in this flow from the one present in normal shear flows. Figure 
5 ( 6 )  shows he ratio of the resulting production term (-maU/ay)  to the dissipation 
( E )  at the same location. We see that this ratio is less than 7 YO throughout the flow. 
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FIGURE 4. Two-dimensional maps of the mean velocity field for the three different grids at z = 65 
cm. The measuring stations were spaced 1.27 cm apart  in the y-direction and 2.54 cm apart  in the 
z-direction. The coordinates of the nearest corner (marked A) are given below for each case. 
( a )  3.3: 1 parallel bar grid, A = (y = 5.08 cm, z = - 10.16 cm, U = 5.95 m/s); ( b )  8.9: 1 parallel 
bar grid, A G (5.08 cm, - 10.16 cm, 6.04 m/s); (c) 3 :  1 perforated plate, A = (10.16 cm, -7.62 cm, 
6.18 m/s). 

Closer to the grid it was even smaller and hence the exclusion of the production term 
from the energy budget is justified throughout the region of study. The results (not 
shown) for the 8.9: 1 parallel bar grid and the perforated plate indicate that 
production term is negligible for them also. However, for the perforated plate the 
relative (to E )  magnitude of the production term did increase with downstream 
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5 

Y (cm) 

FIGURE 5. Profiles of (a)  the correlation and ( b )  the ratio of production to dissipation for the 
3.3 : 1 parallel bar grid at 5 = 49.5M2 (156 cm). The arrow marked C denotes the geometric centre 
of the grid in each case i.e. the location where the mesh size changes. 

distance and thus for this grid we were unable to measure beyond x /M2 = 36.7. As 
will be shown in $4.2 this precluded the measurements reaching the self-similar range 
for this grid. 

Figure 6 shows the two-dimensional map of the (2); field for the three grids a t  
x = 65 cm. At the two homogeneous ends of the mixing layer the variation with z is 
very small; it is always less than 5 %  and in some instances as low as 2%. Within 
the mixing layer however, larger variations with z are seen. The largest variation is 
approximately 15 YO for the two parallel bar grids and approximately 10 YO for the 
perforated plate. However, even for these cases the gradient in the y-direction is 
much larger than that in the z-direction (their ratio is always greater than 5 ) .  Hence, 
the gradients in the z-direction play a negligible role in the overall energetics of the 
flow. Furthermore, the homogeneity in the z-direction improves with increasing 
distance from the grid; figure 6 shows the worst case. 

Finally, we note, from the values of T ~ (  = k, /s , )  and T ~ (  = k Z / e 2 )  shown in table 1, 
that the requirement of equal timescales a t  the two homogeneous edges of the flow 
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FIGURE 6. Two-dimensional maps of the longitudinal r.m.s. velocity field for the three different 
grids at z = 65 cm. The measuring stations were spaced 1.27 ern apart in the ydirection and 
2.54 em apart in the z-direction. The coordinates of the nearest corner (marked Alare given below 
for each case. ( a )  3.3 : 1 parallel bar grid, A E (y = 5.08 cm, z = - 10.16 cm, (d): = 0.1 16 m/s) ; 
(b )  8.9: 1 parallel bar grid, A = (5.08 cm, - 10.16 cm, 0.060 m/s); ( c )  3: 1 perforated plate 
A E (10.16 cm, -7.62 cm, 0.066 m/s). 



The shearless turbulence mixing layer 203 

is approximately met. Table 1 also documents the flow Reynolds numbers, turbulence 
decay laws and other turbulence parameters for the homogeneous regions bounding 
the mixing layer for each of the three grids. The decay laws for the 8.9 : 1 bar grid are 
not given in table 1 ,  since they could not be accurately determined owing to 
interference from the wall boundary layer. 

4. The results 
4.1. The time series 

Before analysing the statistical properties of the data we shall first discuss some 
representative time series. Figure 7 shows the time series of u- and v-fluctuations for 
the 8.9: 1 parallel bar grid a t  x = 21.4M2 (91 cm). The figure juxtaposes flow histories 
obtained a t  three different lateral positions. The first station lies in the homogeneous 
low-turbulence region of _ _  the flow, the second location is within the mixing layer (it 
is a t  the position where u4/(uZ))" attains its maximum, see figure 12 below), and the 
third lies in the homogeneous high-turbulence region. The normalized time series, 
u3/(2)g, u ~ / ( G ) ~ ,  ~"(2); and ~ " (7 )~  are also shown in the figure. To permit 
comparison, the normalized time series within the mixing layer have been scaled 
down by a factor of 4 for the u-component and a factor of 15 for the v-component. 

The time series in both the homogeneous low- and high-turbulence sides of the 
mixing layer are of the same form, and similar to what is normally observed in grid 
turbulence. The time series obtained in the mixing layer, however, are markedly 
different. These show intermittent bursts from the large-scale side with intervals of 
purely low-intensity fluctuations separating them. The high-intensity bursts are 
much larger in magnitude in the v-time series compared to those of the u-series. The 
bursts are predominantly negative in the v-series, while both positive and negative 
large-scale fluctuations from the high-turbulence side are present in the u-series. This 
is particularly evident in the u 3 / ( 2 ) i  and v3/(v")f time series. The ~ " ( 2 ) ~  and v ~ ( ( ; S " ) ~  
series also show strong intermittency in the mixing layer. These series are 
intermittent in the homogeneous regions too ; however, there the large peaks are not 
as isolated and a hierarchy of peaks from very small to very large is seen. 

The time series are further discussed in $4.3 below. 

4.2. The kinetic energy compwnents 

We shall first compare the three kinetic energy components a t  one downstream 
location and then examine the evolution of these components with downstream 
position. Figure 8 shows typical cross-stream profiles of the variances of u-, v- and 
w-fluctuations a t  a fixed downstream location for each of the three grids. The 
measurements were done at x = 33.7M2 (106 cm) for the 3.3 : 1 grid, x = 28.9M2 (123 
cm) for the 8.9 : 1 grid and x = 27.2M2 (91 cm) for the 3 : 1 perforated plate. 

I n  all the three cases, 2 is larger than v" and 3 a t  the two homogeneous ends of 
the mixing layer. This is consistent with measurements of biplanar grids by other 
researchers (Comte-Bellot & Corrsin 1966). Within the mixing layer, however, v" is 
larger than 2 for the parallel bar grids. The v-component of the fluctuating velocity 
is chiefly responsible for transport across the mixing layer and since it is perfectly 
correlated with itself, it transports itself more effectively than it does u- and w- 
fluctuations. Hence v-fluctuations penetrate more deeply into the small-scale side of 
the mixing layer and consequently the 2 and u' profiles cross over in the mixing layer. 
This effect is not as clearly seen in the case of the perforated plate. At larger x, 
however, v" becomes perceptibly larger than u' in the mixing layer for this case too. 
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FIGURE 7 .  Typical time series of (a )  u, u 3 / ( 2 ) :  and ~ ~ / ( 2 ) ~  and ( b )  ZI, v 3 / ( 2 ) :  and ~ " ( 2 ) ~  for 
the 8.9: 1 parallel bar grid at x = 21.4M2 (91 cm) a t  three lateral positions: (i) y = 5.08 cm; 
(ii) y = 8.89 cm ; (iii) y = 22.9 cm. 

The difference in behaviour is probably due to the fact that the flow for this grid is 
in an earlier stage of development compared to  bhose of the parallel bar grids (see 
following discussion). Notice the presence of bumps towards the large-scale ends of 
the mixing layers, particularly for the 3.3 : 1 bar grid and the perforated plate. These 
will be discussed below. 

The arrows in figure 8 marked I locate the inflection points of the variance profiles 
and the arrow marked C shows the geometric centre of the grid, i.e. where the grid 
changes mesh size. We note that almost all the inflection points are located well 
towards the small-scale side of the geometric centre. This behaviour is particularly 
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pronounced for the 3 profiles of the parallel bar grids. The asymmetry noted here is 
consistent with our preliminary observations made earlier (V&W). 

Figure 9 shows normalized u2, v2 and 2 variance profiles taken at  three 
downstream locations for the three different grids. The collapse is achieved by first 
normalizing the variance by the asymptotic - _  values attained by the profiles a t  the 
large-scale homogeneous end of the flow (u;, vi and z). The curves are then centred 
about their respective inflection points. Finally, the lateral spread is non- 
dimensionalized by the lengthscale I ; ,  which is obtained by mapping the small-scale 
end of the variance profile to zero and the large-scale end to one. The horizontal 
distance between the points with ordinate values of 0.25 and 0.75 is then the required 
Z;. This lengthscale was obtained from the 2 profile alone but used to collapse the 
profiles of all three energy components. The lengthscale may be viewed as a simple 
generalization of the half-length used to characterize symmetric profiles, found in 
jets and wakes, etc. Table 2 contains all the information relevant to the procedure 
discussed above, i.e. the normalizing length and velocity scales and the locations of 
the inflexion points. 

The collapse is remarkably good for all the three components and for all the three 
grids. It should be noted that since 1; was obtained from the 2 profile alone but used 
to normalize the profiles of all three energy components the collapse of the data 
indicates that the individual lengthscales grow a t  the same rate. We shall see in 54.5, 
however, that the local lengthscales of u, v and w vary in very different ways across 
the layer. 

The solid lines shown in figure 9 represent the best error-function fits (obtained by 
minimizing the mean-square error) to the collapsed profiles. The upper and lower 
limits of the error functions were fixed a t  the values attained by the respective 
variances in the high- and low-intensity homogeneous regions of the flow. It is clear 
that an error function does not provide a good fit to the profiles of the 3.3 : 1 parallel 
bar grid or the perforated plate. In  both these cases the most significant departure 
from an error function is on the high-turbulence side of the flow where an overshoot 
or a ‘bump ’ occurs in the profiles. This was also observed in our earlier measurements 
(V&W) with a parallel bar grid. For both the 3.3 : 1 bar grid and the 3 : 1 perforated 
plate, the lengthscale ratio (Z2 / l l )  is sufficiently large, 2.4 and 2.2 respectively (table 
l),  that we could expect asymmetry in the variance profiles because of the presence 
of two distinct scales. A simple mixing-length type analysis, wherein the lengthscale 
is allowed to  vary smoothly from a small value in the low-turbulence homogeneous 
region to a large value in the high-turbulence homogeneous region, would yield a 
variance profile similar to the 3 profile of the 3.3 : 1 parallel bar grid. Here, the profile 
is steeper than the best fit error function on the low-turbulence side of the mixing 
layer while i t  is shallower than the error function on the high-turbulence side. It is 
not clear why the strong interaction of the two scales also produced the ‘bump’ in 
the variance profiles. 

For the 8.9: 1 bar grid (figure 9b), however, an error-function fit is good. Here the 
lengthscale ratio is approximately 4.3 (table 1)  and the turbulence energy ratio is 
approximately 22 (see table 3, 54.3 below). (The corresponding ratios for the 3.3: 1 
parallel bar grid are 2.4 and 6.2 respectively.) Clearly, then, the large scale dominates 
the energetics of the flow for the 8.9: 1 grid and the mixing layer is essentially 
controlled by a single scale. We shall give further evidence of this when we examine 
the lateral variation of the lengthscales in 54.5. 

The profiles of Gilbert (1980) were also well represented by an error function, 
suggesting that there too the mixing process was controlled by a single scale. 

_ _  
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FIGURE 8 (u, b ) .  For caption see facing page. 
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FIQURE 8. Profiles of the variances u2, v2 and w', normalized by U 2  for the three different grids. (a )  
3.3 : 1 parallel bar grid ; z = 33.65M2 (106 cm), ( b )  8.9 : 1 parallel bar grid ; 5 = 28.9M2 (123 cm) and, 
(c) 3 :  1 perforated plate; z = 27.2M2 (91 cm). The arrows marked I,, I, and I, indicate the locations 
of the inflection points of the u2, v2 and w' profiles, respectively.2he arrow-marked C shows the 
location of the geometric centre of the grid. The symbols are: 0, u 2 / U 2 ;  A, v 2 / U 2 ;  and x , w 2 / U 2 .  

_ _  

- -  

However, in contrast to our 8.9 : 1 grid, for Gilbert's experiment the mesh ratio was 
only 2, giving a lengthscale ratio of 1.4, a value too close to unity to discern 
pronounced two-scale interaction. 

It appears, then, that there is a distinct range of lengthscale ratios over which two 
scales are dominant and the resulting profiles are asymmetric. As this ratio 
approaches unity (as in Gilbert 1980), the flow is essentially that of a single scale 
(although the magnitudes of the variances on either side of the mixing layer are 
different), while as the lengthscale ratio becomes very large, the flow is again 
dominated by a single lengthscale. This is the case for the 8.9: 1 parallel bar grid. 

Figure 10(a) shows the variation of I ;  with the convection time x / U  €or the three 
grids. The half-width has been normalized by l,, the in$egral lengthscale on the large- 
scale side. As shown in table 1,1, has been defined as kE/e, and was obtained from the 
respective decay laws.? The mixing layer of the 3.3: 1 bar grid appears to have 
reached a self-similar state and the flow for the 8.9: 1 bar grid also seems to be 
approaching self-similarity. However, the flow is clearly not self-similar for the 3 : 1 
perforated plate because the two lengthscales (1; and 1,) are growing at  different rates. 
Notice that the ratio l ; / l ,  asymptotes to a larger value for the 3.3 : 1 bar grid than for 
the 8.9: 1 bar grid. The reason for this is that both scales are involved in spreading 

t As mentioned in $3, the decay laws for the 8.9:  1 bar grid could not be accurately determined 
because of boundary-layer interference. Hence, for this grid I, was obtained using an estimate of 
E ,  from velocity derivatives and assuming a lengthscale growth rate of 5°,3 (i.e. the same as the 
other grids). Both methods of estimating I ,  agree to within a few percent for the 3.3: 1 bar grid. 
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- 0.6 - 

0.4 - 

the mixing layer in the case of the 3.3: 1 bar grid, while, for the 8.9: 1 bar grid, the 
large scale accounts almost entirely for the spreading. (Note that the use of I, as the 
normalizing lengthscale would have been just as appropriate and in this case the 
asymptote would have been larger for the 8.9: 1 bar grid.) Since the length- and 
velocity-scale ratios are very similar for the 3.3: 1 bar grid and the 3 :  1 perforated 
plate, we could expect the same asymptotic behaviour for both these flows. However, 
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FIQURE 9. Normalized variance profiles for the three different grids. The variances u2, CaEd  f 
- have been normalized by the values attained in the large-scale homogeneous region, i.e. by ui, vi and 
vi, respectively. The lateral coordinate has been centred about the inflection point of the respective 
variance profile and normalized by the half-width 2; (see $4.2). The solid lines represent best error- 
function fits to the data. (a) 3.3: 1 bar grid; a, x = 33.65111, (106 cm); x , x = 41.59M2 (131 cm); 
+,x=49.561, (156cm). (b) 8.9:l bargrid; A, x=21.4N2 (91 cm); x ,x=28.9M2 (123cm);  +, 
x = 36.7111, (156 cm). (c) 3: 1 perforated plate; A, x = 19.4Nz (65 cm); x ,  x = 27.ZM, (91 cm); +, 
x = 36.7M2 (123 cm). 

X 

(m) 4% 

1.06 111.6 
1.31 137.9 
1.56 164.2 

0.91 190.78 
1.23 257.86 
1.56 327.04 

0.65 58.04 
0.91 81.25 
1.23 109.8 

Inflection 
point locations 

- - - 
u: v: 4 I" 1, 1, li 

x/M, (mz/s2) (mz/sz) (ma/sz) (cm) (cm) (cm) (cm) 

(a) 3.3: 1 parallel bar grid 
33.65 0.065 0.055 0.046 15.9 15.0 18.5 6.10 
41.59 0.046 0.037 0.033 15.9 15.0 18.5 6.62 
49.52 0.038 0.031 0.026 15.9 15.0 18.7 7.30 

(b) 8.9: 1 parallel bar grid 
21.4 0.108 0.082 0.077 12.9 11.1 12.0 4.18 
28.9 0.071 0.055 0.050 12.9 9.9 12.0 5.35 
36.7 0.053 0.038 0.035 12.9 9.5 12.0 5.80 

(c) 3 : 1 perforated plate 
19.4 0.037 0.033 0.032 19.7 19.2 19.1 1.83 
27.2 0.023 0.022 0.020 19.7 19.2 19.1 2.45 
46.6 0.013 0.012 0.012 19.7 19.2 19.1 3.5 

TABLE 2. Normalization parameters for the three grids 
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FIGURE 10. (a)  The evolution of the half-width ( I ; )  normalized by the integral lengthscale I,, for the 
three grids. 0,  3.3: 1 parallel bar grid; +, 8.9: 1 parallel bar grid; A, 3 :  1 perforated plate. Note: 
the scales are logarithmic. ( b )  The variation of the integral timescale 7 ( = k / e )  , normalized by its 
value in the large-scale homogeneous region, across the mixing layer. 0, 3.3: 1 parallel bar grid, 
z = 49.5M, (156 cm) ; A, 3 : 1 perforated plate, z = 20.4M, (68.5 cm). 

because of the way in which the grids were constructed, it was possible to generate 
a much sharper transition from one scale to the other with the perforated plate. Thus 
the initial value of l;/l, was further away from its asymptotic limit (assuming it 
exists) for the 3 : 1 perforated plate, which accounts for its rapid growth and lack of 
self-similarity in the region of study. It is possible that had we been able to measure 
further downstream for the perforated plate, we would have seen a tendency towards 
self-similarity for this flow too. 

(= ( ~ ~ / € ~ ) / ( ~ 2 / ~ 2 ) )  for the 3.3: 1 bar grid and the 3:  1 perforated plate, across the 
mixing layer. The downstream locations are : x = 49.5M2 (I56 em) for the 3.3 : 1 bar grid 
and x = 20.M, (68.5 cm) for the 3:  1 perforated plate. The timescales should be 
approximately equal at the two homogeneous edges of the mixing layer since the 
power-law decay exponents are nearly the same (see table 1). It is interesting to  see 
that the ratio T ~ / T ,  is close to unity in the mixing layer too. The overall variation is 
less than 20% in each of the cases shown. We note that figure 10(a) indicates that 
the mixing layer of the 3.3: 1 bar grid is nearly self-similar a t  x = 49.5b!12 while it is 
clearly not self-similar at x = 20.4M2 for the perforated plate. Thus it appears that 
the behaviour of the time scale ratio is insensitive to the state of development of the 
mixing layer, i.e. whether or not it is in the self-similar regime. 

Figure 10(b) shows the variation of the ratio of the integral timescales, 
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4.3. The skewness and the kurtosis 

Figure 11 shows the variation of the skewness of u-, v- and w-fluctuations, S,, S,  and 
S,, respectively, across the mixing layer _ _  for the three different grids. The skewness 
is defined in the usual way as S, = u3/(u2)i (and similarly for 8, and 8,). Here the 
collapse has been achieved by first fixing the origin of the abscissa at the location of 
the inflection point of the corresponding variance profile, and then normalizing the 
widths of the graphs by 1; obtained from the 2 profile at the same downstream 
location. The downstream locations and symbols are the same as in figure 9. The 
collapse is excellent in all the cases suggesting that the asymptotic values of the 
skewnesses have been attained. The data show some scatter on the low-turbulence 
side for the 8.9: 1 bar grid due to interference from the wall boundary layer. For all 
the profiles the skewness values are zero at the two homogeneous ends as expected. 

First we shall discuss the S, profiles. The large negative values of S, are due to the 
fact that in the low-turbulence side of the mixing layer, large deviations from zero 
in the w-time series (figure 7 b)  are more likely to have originated from the large-scale 
side and hence are more likely to be negative. (A similar argument was used by 
Corrsin 1950, to estimate the skewness of transverse velocity fluctuations in weakly 
inhomogeneous turbulent shear flows.) As the energy ratio increases, the magnitude 
of the maximum departure from zero also increases. Thus the value of the extremum 
of S, for the 8.9: l  bar grid is -2 .5 ,  while it is -1.2 for the 3.3: l  bar grid and 
approximately - 0.8 for the 3 : 1 perforated plate. The lateral gradient of v" is one of 
the principal contributors to the transport of kinetic energy across the mixing layer. 
This is discussed in $4.4 below. 

The effects giving rise to S, are of a more subtle nature. Since the flow is only 
weakly inhomogeneous in the x-direction, we would expect a near zero value of S ,  
throughout the mixing layer. However, figure 1 1  shows a significant region of 
negative values of S, for both the parallel bar grids and both regions of positive and 
negative values of S ,  for the perforated plate. The magnitudes of the negative peaks 
are -0.65 for the 3.3 : 1 bar grid, - 0.55, for the 8.9 : 1 bar grid, and -0.3 for the 3 : 1 
perforated plate. While the magnitude of S, is significantly smaller than that 
of S,, it  is still much larger than 0.04, the maximum value reported for decaying 
homogeneous grid turbulence (Maxey 1986). 

The reason for the departure of S ,  from zero appears to be due to the presence of 
the non-zero (but small) Reynolds stress m (figure 5a).  The mechanism by which the 
EO correlation is generated has been discussed in $92 and 3 above. The transport 
equation for 2 (equation ( 5 a ) )  then indicates that the production term rn a/ay (2) 
is also not zero in the mixing layer. Equation (3),is consistent with a positive value 
of m across most of the mixing layer (confirmed by our observations; figure 5a) ,  
which in turn implies that the production term EU a/ay (2) is predominantly positive 
and this is in agreement with the negative sign of 8, in figure 11. The region of 
positive 8, seen in the case of the perforated plate (figure 11 c) ,  decays with increasing 
downstream distance x ,  while the negative peak is approximately constant with x. It 
is unclear why this positive region occurs close to the grid. We note that while WD 
plays a crucial role in the 2 budget, it  is dynamically insignificant in the kinetic 
energy budget as a comparison of the production and dissipation terms showed 
(figure 5b) .  Furthermore, the downstream transport of kinetic energy due to the 
gradient of u'j is also insignificant compared to the lateral transport due to a/ay(&) 
(see $4.4 below). 

Finally, S,  should be identically zero for the whole flow from symmetry 
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considerations. However, it attains a small peak value of 0.3 for all three grids. We 
do not understand the reason for this behaviour, but we note that it seems to  be 
independent of the mode of turbulence generation since i t  is present for all three 
grids. 

The profiles of the kurtosis (also called the flatness factor) of u-, v- and w- 
fluctuations, K,, K ,  and K ,  respectively, for the three different grids are shown in 



The shearless turbulence mixing layer 

S" 

-0.4 

-0.8 

213 

- 

- 

I 

0.4 

-0.4 - 

+x A +  
f 

+ ' h  + 
+ X  

A x  A 

A 
X + 

A + x  
t T 

xt 

A + +  
I I 1 I I 

- 3 - 2 - 1  0 1 2  3 4 

CV-YW; 

FIGURE 11. Profiles of S,, S ,  and S, for the three different grids. The origin of the abscissa has been 
shifted to the location of the inflexion point of the corresponding variance profile (figure 9) and the 
abscissa has been normalized by Z; in each case. (a )  3.3: 1 bar grid, (6) 8.9: 1 bar grid and (c) 3: 1 
perforated plate. In (a), (6) and (c), the symbols indicate the same downstream locations as those 
in figures 9(a), 9(6) and 9((c) respectively. 

- -  
figure 12. The kurtosis is the normalized fourth moment ; K ,  = u ~ / ( u ~ ) ~  (and defined 
similarly for K,  and K,). The method used in collapsing these profiles is the same as 
that employed for the skewness profiles (figure 1 1 ) .  

A t  the two homogeneous ends the turbulence is nearly Gaussian and K,, K ,  and 
K,  are approximately 3 in these regions for all three grids. Within the mixing layer, 
however, the curves show significant departures from 3. We note that the peaks of 
all the three curves lie well towards the small-scale side of the mixing layer. The 
collapse is excellent for the 3.3:  1 bar grid (figure 12a). Like the skewness profiles 
(figure l i b ) ,  the kurtosis profiles for the 8 . 9 : l  parallel bar grid (figure 12b) show 
small scatter on the low-turbulence side due to interference from the wall boundary 
layer. The kurtosis profiles for the perforated plate, especially those of K,, show a 
systematic decay of the peak value with increasing x. This lends further credence 
to the observation made in $4.2 that this mixing layer is in an earlier stage of 
development than those of the parallel bar grids. (A small amount of decay can also 
be seen in the profiles of S ,  (figure l l c )  for the perforated plate, but the change is 
much more marked in the case of K,  (figure 12c).) 

As shown in V&W, the form of the K ,  and K ,  profiles may be understood as 
follows: if it  is assumed that the mixing process consists of only penetration (of the 
two scales into one another), rather than by penetration and turbulent diffusion, 
then the p.d.f. of the velocity fluctuations within the mixing layer is given by linear 
combination of the p.d.f.s a t  the two homogeneous edges. If we define r as the 
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3 

intermittency factor of the large scale then the kurtosis within the mixing layer is 
given by 

where 

(We have used the observed fact that the p.d.f.5 a t  the two homogeneous ends are 
Gaussian and that their r.m.s. values are (2); and (2)") K attains its maximum a t  
rm = 1/ (R2+ 1) and its value there is 

3 (R2 + 1 ) *  
4 R2 ' 

K m = -  (9) 

Figure 13 shows a comparison of the K ,  and K ,  profiles for the 3.3: 1 grid a t  x = 

33.65M2, with our estimates, calculated from (7).  The intermittency factor r has been 
calculated from the variance profiles at the same location using the relation 

- -  
u2(r)  -ui 

r =  - _ .  
u; - u; 



216 S.  Veeravalli and 2. Warhaft 

'r I 1 

+ 
+ +  

+ 
t + 

X 

X 

21 I I 1 
5 15 25 35 

Y (cm) 

FIGURE 13. K, and K ,  compared with their estimates (equation (7)) for the 3.3: 1 parallel bar 
grid a t  z = 33.65M2 (106 cm). 0 ,  K,; x , K ,  (estimated); A, K,; +, K ,  (estimated). 

There is good qualitative agreement between the estimated and experimental curves. 
The locations of the peaks are predicted very well. However, the peak values are 
much lower in the experimentally obtained curves. This is because mixing takes 
place by both penetration and turbulent diffusion mechanisms. If only diffusion were 
important, the kurtosis profiles would not deviate from the Gaussian value of 3. If 
penetration were solely responsible for the miiing, the kurtosis profile would be given 
by (7 ) .  Since both mechanisms are present in the experiment, we observe an 
intermediate value for the kurtosis peak. 

A convenient measure of the relative importance of penetration to the mixing 
process, is the kurtosis excess factor defined as K-3. In  table 3 the peak excess factors 
of K ,  and K ,  are compared with their estimates obtained from (9). As expected, the 
peak values are much higher for the 8.9 : 1 bar grid due to its larger energy ratio. 
However, the ratio of the estimated peak to  the experimental peak is approximately 
the same for the two parallel bar grids, indicating that the relative importance of 
penetration is roughly the same for both these grids. It is not clear why the peak 
values of the excess factors are much lower for the 3 :  1 perforated plate when 
compared with those of the 3.3 : 1 bar grid though the energy ratios are approximately 
the same (table 3). In Gilbert's experiment the variance ratio was very small; 
approximately 1.6. Equation (9) then indicates that  the peak excess factor should 
not exceed 0.17, which is why he did not observe any systematic departures from a 
Gaussian distribution in the mixing layer. 

Finally, we consider why in the mixing layer K,  is much larger than K ,  and K ,  
(figure 12). To simplify the discussion we shall assume that only negative v- 
fluctuations from the high-turbulence side penetrate the low-turbulence side of the 
mixing layer (this assumption is sound as the time series in figure 7 show). Then, a t  
any point on the small-scale side of the mixing layer, a cut-off velocity V, may be 



T h e  shearless turbulence mixing layer 217 

3.3 : 1 33.65 6.6 6.1 5.9 6.19 
Bar 
8.9: 1 21.4 27 - 16.7 22 - 22 
Bar 
3 : l  27.2 5.5 6.5 6.3 6.26 
Plate 

K g  
e m - 3  

K,E,-3 K,Ern-3 Ern-3 

1.36 1 . 1  3.56 3.05 0.38 0.36 

6.1 5.7 18.78 15.11 0.32 0.38 

0.36 0.59 2.76 3.34 0.13 0.18 

TABLE 3. Energy ratios and kurtosis excess factors for the three grids. For the excess factors, 
the subscript m refers to the maximum value, while the superscripts E and T refer to experiment 
and estimate (equation (9)) respectively. 

defined, such that no v-fluctuations originating from the large-scale side, of 
magnitude less than 151, would be present, because they would not be able to 
penetrate that deeply into the mixing layer in the given convection time, x/U. If yf 
is the distance of the point in question from the geometric centre C, then a crude 
estimate for Vf would be - - yf U/x. As yf increases, (i.e. proceeding further into the 
small-scale side) the magnitude of V,  increases and consequently less and less of the 
large-scale v-p.d.f. is transported across the mixing layer. If u and w were well 
correlated with v, then it could be assumed that the p.d.f.s of u and w transported 
by the v-bursts, would be similarly truncated. However, ED, as discussed above, is 
quite small and m should be identically zero (a consequence of homogeneity in the 
z-direction), thus the entire u-  and w-p.d.f.5 are transported across the mixing layer. 
Hence, relative to  u and w, the v-fluctuations originating from the large-scale side 
would contribute more to the fourth moment than to the square of the second 
moment, thereby yielding larger values of K,  than K ,  or Kw.  Presumably the above 
argument should hold for the edge of the boundary layer or wake also, i.e. K ,  should 
be greater than K ,  or K,. 

For further discussion of the skewness and kurtosis profiles the reader is referred 
to Pope & Haworth (1987) who have used p.d.f. methods to model our earlier 
measurements (V& W ) . 

4.4. T h e  energy budgets 
The equations_governing the evolution of u2, v2, w 2  and the kinetic energy 
k( = gG+;;"+w'}) have - _  been discussed in $2. Figure 14 shows the budgets for the 
energy components u2, v2 and 2 across the mixing layer, for the 3.3: 1 parallel bar 
grid a t  x = 21.2M2 (x = 66.7 cm) where the mixing layer is well established. 
From the component energy budgets, the full kinetic energy budget was obtained 
and this is shown in figure 15. Less complete budget measurements were made for the 
other two grids and those will not be presented here. The results suggest the same 
qualitative behaviour as for the 3.3 : 1 bar grid. 

Before describing the form of the budgets in figures 14 and 15 we shall discuss the 

- - _  
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FIGURE 14 (a, b ) .  For caption see facing page. 

way they were deduced from the measurements. In  order to determine the 
longitudinal derivatives, and hence the convection and longitudinal triple-correlation 
transport terms, two sets of measurements of the second and third moments of 
u, v and w were made of a distance of approximately one large mesh apart in the 
longitudinal direction. The locations were z1 = 21.2M2 (66.7 em) and x2 = 22.1M2 
(69.5 cm). From these measurements the gradient of u2, v2, and 2 and hence the 
advection terms Ua/az (g ) ,  Ui3/ax(z) ,  and Ui3/ax(G) (equation (1)) were 
calculated using a linear fit. We note that the above procedure would underestimate 
the gradient a t  x1/M2 and overestimate that a t  x2/M2.  Since the budgets were 
calculated a t  xl /M2,  the values obtained above were uniformly increased by 6%. 

_ _  
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-0 .61  

-2 - 1  0 1 2 

FIGURE 14. Budgets (see equation (1) and 94.4) for the energy components, (a) 2, (b) 2 and ( c )  f 
across the mixing layer for the 3.3:  1 parallel bar grid a t  x = 21.2M2 (66.7 cm). The ordinate values 
have been normalized by U 3 / x .  In (a), ( b )  and (c), the lateral coordinate has been centred about the 
geometric centre of the grid and non-dimensionalized by the half-width I ; .  The arrows marked I 
have the same significance as those in figure 8(a) .  The labels indicated in the figure are: A -, 
normalized advection ; P . . . . . . , normalized pressure transport and redistribution ; T - - - - - -, 
normalized triple-correlation transport ; and D normalized dissipation ( -2xe/3U3).  The 
vertical scale has been multiplied by 100. 

cv-Y,)ll+ 

I 

I -0.6 

L I I I I I 
-2 - 1  0 1 2 

c v - Y M $  

FIGURE 15. The kinetic energy budget (equation ( 2 ) )  for the 3 .3 :  1 parallel bar grid at x = 21.2M2 
(66.7 cm). The abscissa and ordinate have been normalized in the same way as those in figure 14. 
The arrows marked I have the same meaning as those in figure S ( a ) .  The labels are: A -, 
normalized advection ; P +. . . . . , normalized pressure transport ; T - - - - - - , normalized -triple 
correlation transport ; D normalized total 
transport (triple correlation plus pressure). The vertical scale has been multipled by 100. 

normalized dissipation ; and TT 
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This value was chosen so that the advection terms would match those obtained from 
the decay laws a t  the two homogeneous edges of the mixing layer. The dissipation e 
was estimated from the second moments of the time series au/at and av/at, invoking 
Taylor's frozen-flow hypothesis and local isotropy. The third component awlat was 
not measured at xJM2 ; however, measurements further downstream indicate that 
(aw/at)2 = 0.9 (av/at)2 across the whole flow (a slight ~~ and unexplained departure from 
that usually found in grid turbulence where (aw/at)2 = (av/at)2).  Thus e was 
determined as equal to 3 v / V ( ( a ~ / a t ) ~  + 1.9(av/at)2). Though the overall contribution 
to the budget of the downstream transport (triple correlation) terms was negligible, 
as expected, locally it was found to be as large as 15% of the lateral transport term 
in the 2 and 3 budgets. Hence, in these budgets, the downstream transport terms 
were also included. I n  the case of 3, however, the longitudinal transport term was 
always less than 5% of the lateral transport term and was therefore dropped from 
the enerp;Si balance. a(w"v)/ay was not measured; _ _ _  however, its value was estimated 
from a(u2v)/ay, assuming that w2w/[w2 (v2)4] = u2v/[u2 (v2);]. Finally, the pressure 
terms were obtained a5 a difference of the terms discussed above, as they could not 
be measured. 

The curves in figures 14 and 15 have been normalized by the mean velocity and the 
convection time, i.e. by U 3 / x .  The abscissa has been centred around the geometric 
centre of the grid and normalized by li obtained from the 2 profile. (The inflection 
points _ _  of the variance profiles were not used here for centring as they are different 
for u2, v 2  and 2.) 

Figure 14 (a) shows the energy balance for 2 (equation (1  a) ) .  We note that the 
dissipation term (and to a lesser extent the advection term) dominates across much 
of the mixing layer. However, although the respective peak values of the pressure 
and triple correlation terms are only 35 % and 20 % of the large-scale dissipation, 
they are large compared with the dissipation in the low-turbulence side of the layer 
and there is a region over which the advection is nearly zero, and dissipation is 
balanced by the pressure and triple-correlation terms alone. For the 2 budget, 
transport due to the pressure-velocity correlation should be negligible (equation 
(1 a)) and the pressure term should arise predominantly from the redistribution of the 
energy components (Tennekes & Lumley 1972). Hence, we would expect it to be 
positive in the centre of the mixing layer where 2 < 3 and negative a t  the large- 
scale edge, where u" > v" and w' (see figure 8a) .  Figure 14 ( a )  shows that this is indeed 
the case (the negative region in the low-turbulence edge is probably too small in 
magnitude to detect). The triple-correlation transport term shows a transfer of 
energy down the gradient, i.e. it is positive on the low-turbulence side and negative 
on the high-turbulence side. 

The budget for 2 is shown in figure 14 ( b ) .  The triple-correlation term here is larger 
than it is in the 2 budget, and again there is a region on the low-turbulence side of 
the mixing layer where it balances dissipation and the advection term is negligible. 
The triple-correlation term again shows transfer of energy down the gradient. The 
pressure term in the 3 equation consists of both transport and scrambling 
(redistribution). It shows a fairly large negative region on the high-turbulence side. 
This behaviour is discussed with reference to the kinetic energy budget below. As in 
the case of the 2 budget discussed above, the advection and dissipation terms 
dominate over much of the flow. 

The 2 budget shown in figure 14(c) is similar to the 2 budget, except for the 
behaviour of the pressure term. I n  a similar manner to the budget discussed above, 
the pressure term arises entirely due to  redistribution, for the flow is homogeneous 

_ _ - -  
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in the z-direction, but it is positive throughout the mixing layer (unlike in the 2 
- budget where it has both positive and negative regions) since 2 and 3 are larger than 
w2 across the whole flow. 

Figure 15 shows the total kinetic energy balance. In addition to the curves for 
advection, dissipation, triple-correlation transport and pressure transport, a fifth 
curve showing the total transport has been added. As expected from the component 
energy budgets, the advection and dissipation terms dominate across much of the 
flow. The behaviour of the pressure transport term is interesting; it has a negative 
region that extends well into the high-turbulence side of the flow and it is positive 
in most of the mixing layer (presumably, close to the wall the pressure term should 
go to zero ; the fact that it does not is probably due to interference from the boundary 
layer). There is a region near the geometric centre of the grid where the pressure and 
triple correlation terms oppose each other. This suggests that energy transfer across 
the mixing layer takes place due to two distinct mechanisms. The triple-correlation 
term is involved in essentially a gradient-diffusion-like mechanism and is hence 
active in the central region of the mixing layer where strong gradients are present. 
The pressure term, on the other hand, transfers energy from the entire large-scale 
side of the flow (including the nearly homogeneous region), to the central and small- 
scale regions of the mixing layer. The total transport curve therefore shows energy 
transfer from the entire region to the right of the geometric centre, to the region to 
the left of it. 

Finally, some consistency checks were made on the transport terms. The lateral 
triple-correlation transport term and the lateral pressure transport term, should 
integrate to zero across the mixing layer as the flow is homogeneous a t  y + 00. The 
ratio of the total integral to the integral over the positive region alone was used to 
test the accuracy of the measurements. The error in the triple-correlation transport 
term was found to be extremely low, approximately 0.6%. The integral of the total 
pressure term, however, showed a residue of about 25%. This is partly due to the 
measurements not extending far enough into the large-scale side, thereby truncating 
the domain of integration and partly due to the downstream transport component 
(a($)/ax) being included in the integrand. The downstream transport term need not 
integrate to zero. Finally, error is also introduced because the pressure term is 
deduced from a difference of the other terms in the budget. 

4.5. The lengthscales and spectra 
As seen from the discussion of the various velocity moments above, the u-, v- and w- 
fluctuations behave differently from each other in the mixing layer. Hence we could 
expect different characteristic lengthscales for u, v and w as well. In  order to study 
the length-scale of each component separately we define the following : 

and 

ax ax 
8-2 
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FIQURE 16. Profiles of the component length scales +Z,,, I , ,  and Z,, (equation (11)) for the 3.3 : 1 bar 
grid at x = 49.5M, (156 cm). The lateral coordinate has been centred about the geometric centre of 
the grid and normalized by the half-width I ; .  The arrows marked I have the same significance as 
those in figure 8(a ) .  0, $Z,l, A, Z,,; x , Za3. 

These lengthscales have been defined in a manner analogous to  that used for the 
integral scale in homogeneous turbulence I = k f / c  Here, however, both the kinetic 
energy and dissipation have been partitioned into their respective components. 
Similar definitions for the Taylor microscales 

have been used (see for example Bradshaw 1971) but we are unaware of previous use 
of the above-defined lengthscales. We shall show below (figure 19 and related 
discussion) that the lengthscales defined by (11) are in good agreement with those 
derived from the spectra. 

Figure 16 shows the variation of l , , ,  I,, and I , ,  across the mixing layer for the 3.3 : 1 
bar grid at x = 49.5M, (156 cm). Because of the manner in which the dissipation has 
been partitioned, I,, would be twice as large as I,, and I,, even in homogeneous 
isotropic turbulence. It has, therefore, been reduced by a factor of 2 before being 
compared with l , ,  and I,,. The arrows marked I have the same meaning as those in 
figure 8. There is a monotonic increase of I,, and I,, from small values in the low- 
turbulence region to large values in the high-turbulence region. On the other hand, 
though I , ,  is nearly equal to I , ,  at the two homogeneous ends of the mixing layer, i t  
differs sharply from it in the central region. Proceeding from the high-turbulence 
region, l , ,  first dips down slightly and then increases to a value 20 % larger than that 
in the large-scale homogeneous region, before dropping steeply to  the value in the 
low-turbulence homogeneous region. 

This behaviour may again be explained by the presence of the cutoff velocity V, 
(see $4.3) for the large-scale bursts penetrating the small scale-side of the mixing 
layer. The more deeply a large-scale event penetrates the mixing layer, the larger the 
magnitude of its v-component must be. Since large velocity fluctuations are more 
likely to be associated with large lengthscales, the large-scale w-fluctuations 
preferentially transport themselves across the mixing layer. Furthermore, the 
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fractional contribution of each large-scale burst to the local lengthscale progressively 
increases as y decreases since the local turbulence intensity decreases. Hence we see 
a region in the mixing layer where I,, is larger than its value in the large-scale 
homogeneous region. As y decreases further, however, the large-scale bursts become 
so infrequent that the small-scale fluctuations dominate, causing the lengthscale to 
decrease. However, since u and w are not well correlated with v the full spectrum of 
these two components is transported across the mixing layer in a similar way to the 
velocity p.d.f. as discussed in $4.3. Hence I,, and I,, vary monotonically across the 
mixing layer. 

Figure 17 shows a log-log plot of the one-dimensional spectra of u- and v- 
fluctuations, measured at x = 49.5M2 (156 em) for the 3.3 : 1 bar grid. The uppermost 
spectrum in each of figures 17(a) and 17(b) was obtained from the large-scale 
homogeneous region of the mixing layer while the lowest was obtained from the 
small-scale homogeneous region. The longitudinal (Fl1(~J) and transverse (F,,(K,)) 
spectra were calculated from the u- and v-time series respectively, using Taylor’s 
hypothesis. The spectra shown are one sided, hence, 

lomFll(~l)  d ~ ,  = 2, 

The longitudinal spectra (figure 17a) are similar in shape across the whole mixing 
layer. At the large-scale homogeneous end of the mixing layer, the integral 
lengthscale Z,, is larger, while the Kolmogorov lengthscale v,, is smaller (owing to the 
larger dissipation rate E , ) ,  than the corresponding values ( 1 ,  and 7,) at the low- 
turbulence region (see table 1). Hence, we would expect to see a larger separation of 
scales (i.e. a wider spectrum) in the high-turbulence region and this is observed in 
figure 17 (a ) .  

The behaviour of the transverse spectra (figure 17b)  is more interesting. On the 
large-scale side of the mixing layer, inclusive of the homogeneous region, the spectra 
show a region of power-law decay with wavenumber (indicated by the straight lines 
adjacent to the spectra). This behaviour is a t  variance with what is normally 
observed in grid turbulence and is discussed below. Within the mixing layer the low- 
wavenumber region of the spectrum is enhanced due to the same mechanism that 
caused the increase in I , ,  (figure 16). 

The behaviour of the other one-dimensional spectrum, F,,(K,) (not shown), across 
the mixing layer is very much like that of F*,(K~). Here too, the spectra are similar 
in shape throughout the flow and show a large separation of scales in the high- 
turbulence region and a small separation of scales in the low-turbulence region. 

Figure 18 shows the plots of K ~ F ~ , ( K , ) / ~  and K , F , , ( K ~ ) / ~ Z ) S .  log(K,) obtained from 
the raw spectra shown in figure 17. A ninth-order polynomial was fit to the raw 
spectra in log-log space prior to  the calculation of the energy spectra K~ Fll(~l)/i? and 
K ~ F , , ( K , ) / ~ .  The curves of ~ , F ~ , ( ~ , ) / z c z  are similar in shape throughout the mixing 
layer and the peak shifts into lower wavenumbers as y increases (i.e. proceeding from 
the low-turbulence region to the high-turbulence region). On the other hand, 
proceeding from the high-turbulence region to the low, the peak of K ,  F 2 , ( K , ) / 7  is seen 
to first shift slightly towards lower wavenumbers before increasing to the value 
attained in the low-turbulence homogeneous region. The reciprocal of the peak 
wavenumber may be viewed as an approximate measure of the integral scale. Figure 
19 shows the variation of the reciprocals of the peak wavenumbers of K ~ F ~ ~ ( K , ) ,  
K,F,,(K,) and K , F ~ ~ ( K , ) ,  denoted by Z;,, I;, and Zj, respectively, across the mixing layer 
a t  x = 49.5M2 for the 3.3 : 1 bar grid. (Just like I , ,  in figure 16, I i l  has been reduced by 
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FIGURE 17. One-dimensional spectra at various lateral positions (indicated on the figure) in the 
mixing layer for the 3.3 : 1 parallel bar grid at z = 49.5MZ (156 cm). The longitudinal spectraFll(K1) 
are shown in (a) and the transverse spectra F&cl) are shown in (b). To permit comparison, each 
spectrum has been shifted down a decade with respect to the one above it. We note that the 
inflection point I, occurs at y = 12.59 cm, I, occurs at y = 15.0 cm and the geometric centre of the 
grid is at y = 18.2 cm. 

a factor of 2.) We note that the qualitative behaviour is very similar to that shown 
in figure 16. 

Figure 20 shows the profiles of Z;l and tiB for the 8.9 : 1 bar grid at x = 21.432, 
(91 em). This figure clearly indicates the dominance of the large scale over most of the 
flow. The transition from the large-scale value to the small-scale value for both 
and 1i2 occurs well to the left of the respective inflexion points and is particularly 
sharp for 1i2. This should be compared with the behaviour for the 3.3: 1 bar grid 
(figures 16 and 19) for which the transition from large scale to small scale begins 
slightly to the right of the inflexion points, and for which the change is more gradual 
because of the interaction of the two lengthscales. 

Figure 20 suggests, then, that  the 8.9: 1 grid is close to the situation of turbulence 
spreading into an irrotational region, a case of significant theoretical interest 
(Phillips 1972). For the mixing layer described here the ratios of mean-squared 
vorticity [(g/Ai)/(2/A?)] and turbulence energy on either side of the mixing layer 
both vary as (M2/Ml)n ,  where n, the turbulence energy decay power-law exponent, 
is approximately 1.3 (table 1). Thus asM2/M1 is made large the relative contributions 
of turbulence energy and vorticity on the small-scale side may be made as small as 
desired. Moreover the further we proceed downstream the smaller the turbulence 
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FIGURE 18. Normalized one-dimensknal (a )  longitudinal energy spectra, K~ Fll(q)/2 and ( b )  
transverse energy spectra, K ~ F ~ ~ ( K ~ ) / ~ ~  obtained from the spectra shown in figure 17. Each curve 
has been shifted down by a value of 0.1 with respect to the one above it. The arrows marked p 
indicate the locations of the peaks of these curves while the arrows marked b ( b  only) indicate the 
approximate location of the bump in the spectra. 
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FIGURE 19. Profiles of the component lengthscales !&,, l i z ,  and ($4.5) for the 3.3: 1 bar grid at 
5 = 49.52M2 (156 cm). The normalization of the abscissa is the same as that in figure 16 and the 
arrows have the same significance as those in figure 8(a) .  0,  $li1; A, Zi2; x , 2b3. 

Reynolds numbers become (table 1). Thus the Reynolds number on the small-scale 
side may be made to approach a value so small that viscous forces dominate this 
entire region (the final period of decay, Batchelor 1953) while the Reynolds number 
on the large-scale side is still a t  a significantly high value. For the 8.9: 1 grid the 
mean-squared vorticity ratio is 26, the turbulence energy ratio is 22 and the 
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FIGURE 20. Profiles of the component length scales and Zh2, ($4.5) for the 8.9:l  bar grid at 
x = 21.4M2 (91 cm). The normalization of the abscissa is the same as that in figure 16 and the 
arrows have the same significance as those in figure 8 ( b ) .  0, !&, A, Zi2. 

Reynolds numbers based on the Taylor scale are R,, = 18.2 and RA2 = 96.5 (table 1). 
While these values clearly indicate that we are not a t  the irrotational limit on the 
small-scale side of the mixing layer, figure 20 when contrasted with figure 19, does 
suggest that the layer is dominated by the large scale and that if M , / M ,  were 
increased further there would be little change in the qualitative picture. 

I n  the discussion of figure 17 above it was noted that some of the v-spectra showed 
a region of power-law decay with K ~ .  The corresponding curves of K ~ F , , ( K ~ ) / ~  show 
the presence of a small bump in this region to the right of the peaks. While the 
magnitude of the bump is too small to significantly affect the dynamics of the flow, 
its presence is curious. Figure 21 shows a comparison of the location of the peak of 
K ~ F * , ( K ~ )  and the location of the bump. We see that the bump occurs a t  a 
wavenumber much larger than the peak of the energy spectrum in both the low- and 
high-turbulence homogeneous regions, hence it cannot be an artifact of the mixing 
layer. The only other source of small-scale fluctuations is the blocks (see $3.1 for 
details) glued onto the large bars. The block width is smaller than the small bar width 
for the 3.3 : 1 grid (see figure 2) and this is consistent with the larger wavenumber of 
the bump. This conjecture is confirmed by a study of the other two grids (not shown) ; 
the bump does not appear in the energy spectra of the 3 :  1 perforated plate since 
blocks were not used for this grid, while for the 8.9: 1 bar grid, the bump occurs a t  
the same wavenumber as the peak of K, F 2 , ( q )  in the low-turbulence homogeneous 
region, since the block width is the same as the small bar width here (figure 2 ) .  

Hence, the blocks give rise to  a spectral disturbance similar in some respects to  the 
one caused by the zither in the experiments of Kellogg & Corrsin (1980) and Itsweire 
& Van Atta (1984). However, while the zither primarily perturbs the u-spectrum, 
here it is the v-spectrum that is affected. A comparison of the turbulence kinetic 
energy levels in the large-scale homogeneous region, at the same x /M,  with and 
without the blocks, indicates that even when the mean velocity is maintained at the 
same value, the energy is about 30% lower when blocks are present. The decay 
exponent is also found to  increase from approximately 1.1 to 1.3 when blocks are 
added. Hence, the presence of small-scale fluctuations arising from the blocks causes 
a more rapid decay of the turbulence in the large-scale homogeneous region. This 
observation is consistent with the zither experiments (Kellog & Corrsin 1980; and 
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FIGURE 21. Comparison of the location of the peak of the one-dimensional transverse energy 
spectra (figure 18b), with the location of the bump on these spectra. The normalization of the 
abscissa is the same as that in figure 16. A, location of the peak of K~ FZ2(~J; 0 ,  location of the 
bump. 

Itsweire & Van Atta 1984), wherein the turbulence was found to decay more rapidly 
with the zither present; however, the decay laws were not documented in those 
studies. The numerical studies of Orlandi & Grocco (1985) also show the same 
behaviour, though it should be noted that the Reynolds number was much larger in 
their work. 

5. Conclusions 
The turbulence mixing layer is remarkably rich and complex for a flow without 

shear in decaying grid turbulence. In  this experiment we have studied its dependence 
on initial conditions and have documented single point statistics and some spectral 
quantities of the data. There are many other aspects of that warrant study. These 
include flow visualization, scalar dispersion, conditional sampling and the study of 
the large-scale structure. In this regard this study is preliminary (and somewhat 
classical) but we feel it is important to investigate the overall energetics of the 
turbulence before considering the more subtle aspects. 

We shall now summarize our main findings. 
There appear to be two asymptotic states of the shearless mixing layer. The first 

is described by Gilbert (1980). Here the lengthscale ratio is small (in his case 1.4), the 
velocity variance follows the form of an error function and the velocity fluctuations 
are Gaussian (S  = 0, K = 3). The flow can be considered essentially of one scale with 
a region of large variance diffusing into a region of lower variance. The other 
asymptotic state is that of our large lengthscale ratio (8.9: 1 parallel bar grid). Here 
the flow appears to be dominated by the large-scale side of the flow since the energy 
on the small-scale side is too weak to have any effect (the turbulence energy ratio 
is 22: 1 ,  table 3). However, unlike the case of Gilbert, here the flow is highly 
intermittent and the velocity statistics are non-Gaussian (figures 11 b and 12b) 
although the velocity variance profiles are close in form to an error function (figure 
9b). This is the case closest to turbulence spreading into an irrotational flow (54.5). 
For the in-between cases (the perforated plate and the 3.3: 1 parallel bar grid) the 
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lengthscale ratio (2.4: 1 and 2.2: 1 respectively) is such that both scales play an 
important role in the energetics ($4.5). Here the velocity fluctuations are non- 
Gaussian (as for the 8.9: 1 grid) but unlike the two asymptotic cases the velocity 
variance does not follow an error function (figure 9 a  and 9c). 

The perforated plate yielded qualitatively similar results to the bar grid for the 
cases in which their mesh ratios were similar (gs4.2 and 4.3). However, while the 
bar grid approached self-similarity with downstream distance, we were unable to 
measure sufficiently far downstream to determine whether the perforated plate 
would reach self-similarity (figure 10a). For both these grids the integral timescale 
ratio was approximately constant across the entire flow (figure lob). 

The energy budget, investigated in detail only for the 3.3: 1 bar grid, shows the 
importance of the triple-moment transport terms in affecting the spreading of the 
mixing layer. These terms become dominant on the small-scale side of the layer; on 
the large-scale side they are swamped by advection and dissipation (figures 14 and 
15). (One could conjecture a situation in which there was no decay of turbulence on 
either side of the layer and thus the longitudinal advection term would be zero.) 

Finally, we have emphasized that in this flow spreading is affected by turbulent 
diffusion and by the intermittent penetration of one field into the other. In our 
experiment both effects were important (figure 13) whereas in the earlier work of 
Gilbert (1980) no intermittency was observed and thus diffusion was the sole 
spreading agent. 
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